Search results
Results from the WOW.Com Content Network
The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then the coordinate transformation from polar to Cartesian coordinates is given by x = r cosθ and y = r sinθ.
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
For an xyz-Cartesian coordinate system in three dimensions, suppose that a second Cartesian coordinate system is introduced, with axes x', y' and z' so located that the x' axis is parallel to the x axis and h units from it, the y' axis is parallel to the y axis and k units from it, and the z' axis is parallel to the z axis and l units from it.
The distance along the line from the origin to the point z = x + yi is the modulus or absolute value of z. The angle θ is the argument of z. Argand diagram refers to a geometric plot of complex numbers as points z = x + iy using the horizontal x-axis as the real axis and the vertical y-axis as the imaginary axis. [3]
A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: = where e is the eccentricity and is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve).
The effect of this mapping is to displace every point horizontally by an amount proportionally to its y-coordinate. Any point above the x-axis is displaced to the right (increasing x) if m > 0, and to the left if m < 0. Points below the x-axis move in the opposite direction, while points on the axis stay fixed.