Search results
Results from the WOW.Com Content Network
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
Hund's first rule states that the lowest energy atomic state is the one that maximizes the total spin quantum number for the electrons in the open subshell. The orbitals of the subshell are each occupied singly with electrons of parallel spin before double occupation occurs.
It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle. [1]
The rule states that for a given electron configuration, the lowest energy term is the one with the greatest value of spin multiplicity. [1] This implies that if two or more orbitals of equal energy are available, electrons will occupy them singly before filling them in pairs .
Lithium has two electrons in the 1s-subshell and one in the (higher-energy) 2s-subshell, so its configuration is written 1s 2 2s 1 (pronounced "one-s-two, two-s-one"). Phosphorus (atomic number 15) is as follows: 1s 2 2s 2 2p 6 3s 2 3p 3. For atoms with many electrons, this notation can become lengthy and so an abbreviated notation is used.
Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms.
The energy sequence of the first 35 subshells (e.g., 1s, 2p, 3d, etc.) is given in the following table. Each cell represents a subshell with and given by its row and column indices, respectively. The number in the cell is the subshell's position in the sequence.
For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s 2 2s 2 2p 6 3s 2 3p 3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p ...