enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pitot theorem - Wikipedia

    en.wikipedia.org/wiki/Pitot_theorem

    A tangential quadrilateral is usually defined as a convex quadrilateral for which all four sides are tangent to the same inscribed circle. Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2]

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).

  4. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...

  5. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  7. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    By the power-of-a-point theorem, the product of lengths PM · PN for any ray PMN equals to the square of PT, the length of the tangent line segment (red). No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle.

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length). The angle A (respectively, B and C) may be regarded either as the angle between the two planes that intersect the sphere at the vertex A, or, equivalently, as the angle between the tangents of the great circle arcs where they meet at the ...

  9. Radical axis - Wikipedia

    en.wikipedia.org/wiki/Radical_axis

    The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ⁠ ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.