Search results
Results from the WOW.Com Content Network
Conservation of momentum is a mathematical consequence of the homogeneity (shift symmetry) of space (position in space is the canonical conjugate quantity to momentum). That is, conservation of momentum is a consequence of the fact that the laws of physics do not depend on position; this is a special case of Noether's theorem. [25] For systems ...
The local conservation of non-gravitational linear momentum and energy in a free-falling reference frame is expressed by the vanishing of the covariant divergence of the stress–energy tensor. Another important conserved quantity, discovered in studies of the celestial mechanics of astronomical bodies, is the Laplace–Runge–Lenz vector.
With respect to classical physics, conservation laws include conservation of energy, mass (or matter), linear momentum, angular momentum, and electric charge. With respect to particle physics, particles cannot be created or destroyed except in pairs, where one is ordinary and the other is an antiparticle.
The foundational axioms of fluid dynamics are the conservation laws, specifically, conservation of mass, conservation of linear momentum, and conservation of energy (also known as the first law of thermodynamics). These are based on classical mechanics and are modified in quantum mechanics and general relativity.
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant.
A Galilean cannon with proportions similar to the Astro Blaster. A Galilean cannon is a device that demonstrates conservation of linear momentum. [1] It comprises a stack of balls, starting with a large, heavy ball at the base of the stack and progresses up to a small, lightweight ball at the top.
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]
The Navier–Stokes equations form a vector continuity equation describing the conservation of linear momentum. If the fluid is incompressible (volumetric strain rate is zero), the mass continuity equation simplifies to a volume continuity equation: [ 3 ] ∇ ⋅ u = 0 , {\displaystyle \nabla \cdot \mathbf {u} =0,} which means that the ...