Search results
Results from the WOW.Com Content Network
Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.
The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes. For a zero-based array, the root node is stored at index 0, and ...
The best you can do is (in case of array implementation) simply concatenating the two heap arrays and build a heap of the result. [13] A heap on n elements can be merged with a heap on k elements using O(log n log k) key comparisons, or, in case of a pointer-based implementation, in O(log n log k) time. [14]
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.
In computer science, a min-max heap is a complete binary tree data structure which combines the usefulness of both a min-heap and a max-heap, that is, it provides constant time retrieval and logarithmic time removal of both the minimum and maximum elements in it. [2]
Using pointers, an in-place heap algorithm [2] allocates a min-heap of pointers into the input arrays. Initially these pointers point to the smallest elements of the input array. The pointers are sorted by the value that they point to. In an O(k) preprocessing step the heap is created using the standard heapify procedure.
The Boost libraries also have an implementation in the library heap. Python's heapq module implements a binary min-heap on top of a list. Java's library contains a PriorityQueue class, which implements a min-priority-queue as a binary heap. .NET's library contains a PriorityQueue class, which implements an array-backed, quaternary min-heap.
In the first (heap growing) phase of sorting, an increasingly large initial part of the array is reorganized so that the subtree for each of its stretches is a max-heap: the entry at any non-leaf position is at least as large as the entries at the positions that are its children. In addition, all roots are at least as large as their stepsons.