Search results
Results from the WOW.Com Content Network
It uses Na-H antiport, Na-glucose symport, sodium ion channels (minor). [1] It is stimulated by angiotensin II and aldosterone, and inhibited by atrial natriuretic peptide. It is very efficient, since more than 25,000 mmol/day of sodium is filtered into the nephron, but only ~100 mmol/day, or less than 0.4% remains in the final urine.
Potassium ions continue to move out of the axon so much that the resting potential is exceeded and the new cell potential becomes more negative than the resting potential. The resting potential is ultimately re-established by the closing of all voltage-gated ion channels and the activity of the sodium potassium ion pump. [10]
This is followed by the opening of potassium ion channels that permit the exit of potassium ions from the cell. The inward flow of sodium ions increases the concentration of positively charged cations in the cell and causes depolarization, where the potential of the cell is higher than the cell's resting potential. The sodium channels close at ...
Each hormone acts via multiple mechanisms, but both increase the kidney's absorption of sodium chloride, thereby expanding the extracellular fluid compartment and raising blood pressure. When renin levels are elevated, the concentrations of angiotensin II and aldosterone increase, leading to increased sodium chloride reabsorption, expansion of ...
The sodium–potassium pump, a critical enzyme for regulating sodium and potassium levels in cells. Sodium ions (Na +) are necessary in small amounts for some types of plants, [1] but sodium as a nutrient is more generally needed in larger amounts [1] by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance.
The concentration of sodium ions is intimately related to the electrical potential across a membrane. Depolarization often occurs via the influx of sodium ions to the intracellular region. Given that sodium ions have a positive charge, the intracellular region becomes less negatively charged relative to the extracellular region. [1]
Diagram outlining movement of ions in nephron, with the collecting ducts on the right. The collecting duct system is the final component of the kidney to influence the body's electrolyte and fluid balance. In humans, the system accounts for 4–5% of the kidney's reabsorption of sodium and 5% of the kidney's reabsorption of water. At times of ...
This enzyme uses ATP to pump 3 sodium ions out of the cell into the blood while bringing 2 potassium ions into the cell. [10] This action creates a sodium concentration gradient across the cell membrane, with a lower concentration inside the cell compared to both the blood and the tubular lumen. [3]