Search results
Results from the WOW.Com Content Network
However, Mokken scaling is described as 'non-parametric' because it makes no assumptions about the precise shape of the item response function, only that it is monotone and non-decreasing. The key difference between Mokken scales and Rasch scales is that the latter assumes that all items have the same item response function.
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. [1]
Analysis of similarities (ANOSIM) is a non-parametric statistical test widely used in the field of ecology.The test was first suggested by K. R. Clarke [1] as an ANOVA-like test, where instead of operating on raw data, operates on a ranked dissimilarity matrix.
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
That is, no parametric equation is assumed for the relationship between predictors and dependent variable. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the parameter estimates.
The Passing-Bablok procedure fits the parameters and of the linear equation = + using non-parametric methods. The coefficient b {\displaystyle b} is calculated by taking the shifted median of all slopes of the straight lines between any two points, disregarding lines for which the points are identical or b = − 1 {\displaystyle b=-1} .
In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.