Search results
Results from the WOW.Com Content Network
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula , e ix , which offers an even shorter notation for cos x + i sin x , but cis(x) is widely used as a name for this function in software libraries .
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric interpretation of ...
A split-complex number is an ordered pair of real numbers, written in the form = + where x and y are real numbers and the hyperbolic unit [1] j satisfies = + In the field of complex numbers the imaginary unit i satisfies =
The square of the absolute value of a complex number is called its absolute square, squared modulus, or squared magnitude. [ 1 ] [ better source needed ] It is the product of the complex number with its complex conjugate , and equals the sum of the squares of the real and imaginary parts of the complex number.
The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis.. The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0.
Square roots of negative numbers can be discussed within the framework of complex numbers. More generally, square roots can be considered in any context in which a notion of the "square" of a mathematical object is defined. These include function spaces and square matrices, among other mathematical structures.