enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form , or including electromagnetic interactions, it describes all spin-1/2 massive particles , called "Dirac particles", such as electrons and quarks for which parity is a symmetry .

  3. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    These equations need to be refined such that the notation is defined as has been done for the previous sets of equations. Name ... Particle Physics (3rd ed ...

  4. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons , quarks , gauge bosons and the Higgs boson .

  5. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles.

  6. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The (total) spin quantum number has only one value for every elementary particle. Some introductory chemistry textbooks describe m s as the spin quantum number, [6] [7] and s is not mentioned since its value ⁠ 1 / 2 ⁠ is a fixed property of the electron; some even use the variable s in place of m s. [5]

  7. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative.

  8. Particle physics - Wikipedia

    en.wikipedia.org/wiki/Particle_physics

    Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics .

  9. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    Frequencies of solutions of the non-relativistic Schrödinger equation differ from de Broglie waves by the Compton frequency since the energy corresponding to the rest mass of a particle is not part of the non-relativistic Schrödinger equation. The Schrödinger equation describes the time evolution of a wavefunction, a function that assigns a ...