enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    This can be seen as a structured prediction problem [2] in which the structured output domain is the set of all possible parse trees. Structured prediction is used in a wide variety of domains including bioinformatics, natural language processing (NLP), speech recognition, and computer vision.

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]

  4. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The approach arose in the context of machine translation, [93] [94] [95] where the input and output are written sentences in two natural languages. In that work, an LSTM RNN or CNN was used as an encoder to summarize a source sentence, and the summary was decoded using a conditional RNN language model to produce the translation. [96]

  5. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  6. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    The idea is to add structures called "capsules" to a convolutional neural network (CNN), and to reuse output from several of those capsules to form more stable (with respect to various perturbations) representations for higher capsules. [2] The output is a vector consisting of the probability of an observation, and a pose for that observation.

  7. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    In that way, the same parameters are reused for multiple data points, which can result in massive memory savings. The first neural network takes as input the data points themselves, and outputs parameters for the variational distribution. As it maps from a known input space to the low-dimensional latent space, it is called the encoder.

  8. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  9. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    In structured prediction, the hinge loss can be further extended to structured output spaces. Structured SVMs with margin rescaling use the following variant, where w denotes the SVM's parameters, y the SVM's predictions, φ the joint feature function, and Δ the Hamming loss: