Search results
Results from the WOW.Com Content Network
7068 alloy is a 7000 series aluminium-zinc alloy registered with the US Aluminium Association and produced to AMS 4331 (chemical composition and mechanical properties) and AMS 2772 (heat treatment). 7068 alloy ‘A’ and ‘B’ tensile data and fatigue properties have been ratified for inclusion in MIL Handbook 5 / MMPDS.
T6 temper 7075 has an ultimate tensile strength of 510–540 MPa (74,000–78,000 psi) and yield strength of at least 430–480 MPa (63,000–69,000 psi). It has a failure elongation of 5–11%. [9] The T6 temper is usually achieved by homogenizing the cast 7075 at 450 °C for several hours, quenching, and then ageing at 120 °C for 24 hours.
The aluminium-copper alloys have high strength, but are generally less corrosion resistant and harder to weld than other types of aluminium alloys. To compensate for the lower corrosion resistance, 2219 aluminium can be clad in a commercially pure alloy such as 1050 or painted.
AerMet alloy is an ultra-high strength type of martensitic [1] alloy steel. The main alloying elements are cobalt and nickel, but chromium, molybdenum and carbon are also added. Its exceptional properties are hardness, tensile strength, fracture toughness and ductility. [2] Aermet is weldable with no preheating needed. [3]
Alloy 5083 retains exceptional strength after welding. It has the highest strength of the non-heat treatable alloys with an Ultimate Tensile Strength of 317 MPa or 46000 psi and a Tensile Yield Strength of 228 MPa or 33000 psi. It is not recommended for use in temperatures in excess of 65 °C. [2]
Typical material properties for 6005A aluminum alloy include: [2] Density: 2.71 g/cm 3, or 169 lb/ft 3. Electrical Conductivity: 47 to 50% IACS. Young's modulus: 70 GPa, or 10 Msi. Ultimate tensile strength: 190 to 300 MPa, or 28 to 44 ksi. Yield strength: 100 to 260 MPa, or 15 to 38 ksi. Thermal Conductivity: 180 to 190 W/m-K.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.