enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Orbital_angular_momentum...

    The orbital angular momentum of light (OAM) is the component of angular momentum of a light beam that is dependent on the field spatial distribution, and not on the polarization. OAM can be split into two types. The internal OAM is an origin-independent angular momentum of a light beam that can be associated with a helical or twisted wavefront.

  3. Angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_of_light

    The total angular momentum of light consists of two components, both of which act in a different way on a massive colloidal particle inserted into the beam. The spin component causes the particle to spin around its axis, while the other component, known as orbital angular momentum (OAM), causes the particle to rotate around the axis of the beam.

  4. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Angular momenta of a classical object. Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r ...

  5. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.

  6. Orbital angular momentum of free electrons - Wikipedia

    en.wikipedia.org/wiki/Orbital_angular_momentum...

    Interferometric methods borrowed from light optics also work to determine the orbital angular momentum of free electrons in pure states. Interference with a planar reference wave, [5] diffractive filtering and self-interference [15] [16] [17] can serve to characterize a prepared electron orbital angular momentum state. In order to measure the ...

  7. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  8. Orbital motion (quantum) - Wikipedia

    en.wikipedia.org/wiki/Orbital_motion_(quantum)

    Quantum orbital motion involves the quantum mechanical motion of rigid particles (such as electrons) about some other mass, or about themselves.In classical mechanics, an object's orbital motion is characterized by its orbital angular momentum (the angular momentum about the axis of rotation) and spin angular momentum, which is the object's angular momentum about its own center of mass.

  9. Orders of magnitude (angular momentum) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Rotational angular momentum of the Moon: 10 33: 7.07 × 10 33: Rotational angular momentum of the Earth [2] 10 34: 2.871 × 10 34: Orbital angular momentum of the Moon, with respect to the Earth. [3] 10 40: 2.661 × 10 40: Orbital angular momentum of the Earth, with respect to the Sun [2] 10 41: 1.676 × 10 41: Rotational angular momentum of ...