enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line. Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

  3. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    However, a set of four or more distinct points will, in general, not lie in a single plane. An example of coplanar points. Two lines in three-dimensional space are coplanar if there is a plane that includes them both. This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines.

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The Napoleon points and generalizations of them are points of concurrency. For example, the first Napoleon point is the point of concurrency of the three lines each from a vertex to the centroid of the equilateral triangle drawn on the exterior of the opposite side from the vertex. A generalization of this notion is the Jacobi point.

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.

  6. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let l 1 = [a 1, b 1, c 1] and l 2 = [a 2, b 2, c 2] be a pair of distinct lines. Then the intersection of lines l 1 and l 2 is point a P = (x 0, y 0, z 0) that is the simultaneous solution (up to a scalar factor) of the system of linear equations: a 1 x + b 1 y + c 1 z = 0 and a 2 x + b 2 y + c 2 z = 0. The solution of this system gives: x 0 ...

  7. Dichotomy - Wikipedia

    en.wikipedia.org/wiki/Dichotomy

    In set theory, a dichotomous relation R is such that either aRb, bRa, but not both. [1] A false dichotomy is an informal fallacy consisting of a supposed dichotomy which fails one or both of the conditions: it is not jointly exhaustive and/or not mutually exclusive. In its most common form, two entities are presented as if they are exhaustive ...

  8. Intersection - Wikipedia

    en.wikipedia.org/wiki/Intersection

    The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...

  9. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.