enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  3. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    For instance, when sampling from a Cauchy distribution, [30] the sample variance increases with the sample size, the sample mean fails to converge as the sample size increases, and outliers are expected at far larger rates than for a normal distribution. Even a slight difference in the fatness of the tails can make a large difference in the ...

  4. Cochran's C test - Wikipedia

    en.wikipedia.org/wiki/Cochran's_C_test

    Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal N(0,σ 2) Population. In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread.

  6. Robust statistics - Wikipedia

    en.wikipedia.org/wiki/Robust_statistics

    Robust statistical methods, of which the trimmed mean is a simple example, seek to outperform classical statistical methods in the presence of outliers, or, more generally, when underlying parametric assumptions are not quite correct. Whilst the trimmed mean performs well relative to the mean in this example, better robust estimates are available.

  7. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set

  8. 8 Big Outliers That Should Revert to the Mean - AOL

    www.aol.com/news/2013-09-11-8-big-outliers-that...

    Here are eight trends detached from their long-term average that should revert to the mean. 1. The percentage of workers who want full-time work but can only find part-time hours.

  9. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.