enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    Construct the shortest-path tree using the edges between each node and its parent. The above algorithm guarantees the existence of shortest-path trees. Like minimum spanning trees, shortest-path trees in general are not unique. In graphs for which all edge weights are equal, shortest path trees coincide with breadth-first search trees.

  3. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    A caterpillar tree is a tree in which all vertices are within distance 1 of a central path subgraph. A lobster tree is a tree in which all vertices are within distance 2 of a central path subgraph. A regular tree of degree d is the infinite tree with d edges at each vertex. These arise as the Cayley graphs of free groups, and in the theory of ...

  4. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    A linear-time algorithm for finding a longest path in a tree was proposed by Edsger Dijkstra around 1960, while a formal proof of this algorithm was published in 2002. [15] Furthermore, a longest path can be computed in polynomial time on weighted trees, on block graphs, on cacti, [16] on bipartite permutation graphs, [17] and on Ptolemaic ...

  5. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  6. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.

  7. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    The level ancestor query LA(v,d) requests the ancestor of node v at depth d, where the depth of a node v in a tree is the number of edges on the shortest path from the root of the tree to node v. It is possible to solve this problem in constant time per query, after a preprocessing algorithm that takes O( n ) and that builds a data structure ...

  8. Minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree

    Such a tree can be found with algorithms such as Prim's or Kruskal's after multiplying the edge weights by -1 and solving the MST problem on the new graph. A path in the maximum spanning tree is the widest path in the graph between its two endpoints: among all possible paths, it maximizes the weight of the minimum-weight edge. [21]

  9. Widest path problem - Wikipedia

    en.wikipedia.org/wiki/Widest_path_problem

    A variant of the minimax path problem has also been considered for sets of points in the Euclidean plane. As in the undirected graph problem, this Euclidean minimax path problem can be solved efficiently by finding a Euclidean minimum spanning tree: every path in the tree is a minimax path. However, the problem becomes more complicated when a ...