Search results
Results from the WOW.Com Content Network
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
The mass of any of the discs is the mass of the sphere multiplied by the ratio of the volume of an infinitely thin disc divided by the volume of a sphere (with constant radius ). The volume of an infinitely thin disc is π R 2 d x {\displaystyle \pi R^{2}\,dx} , or π ( a 2 − x 2 ) d x {\textstyle \pi \left(a^{2}-x^{2}\right)dx} .
The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13] The portion of the mass that is located at radii r < r 0 causes the same force at the radius r 0 as if all of the mass enclosed within a sphere of radius r 0 ...
Since 2012, the AU is defined as 1.495 978 707 × 10 11 m exactly, and the equation can no longer be taken as holding precisely. The quantity GM —the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted μ).
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...
Within a uniform spherical body of radius R, density ρ, and mass m, the gravitational force g inside the sphere varies linearly with distance r from the center, giving the gravitational potential inside the sphere, which is [7] [8] = [] = [],, which differentiably connects to the potential function for the outside of the sphere (see the figure ...
All the mass at a greater distance than r from the center has no resultant effect. For example, a hollow sphere does not produce any net gravity inside. The gravitational field inside is the same as if the hollow sphere were not there (i.e. the resultant field is that of all masses not including the sphere, which can be inside and outside the ...