enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    Figure 12: An energy profile, showing the products (Y), reactants (X), activation energy (E a) for the endothermic and exothermic reaction, and the enthalpy (ΔH). The profile for same reaction but with a catalyst is also shown.

  3. Activated complex - Wikipedia

    en.wikipedia.org/wiki/Activated_complex

    Endothermic reactions absorb energy from the surroundings, while exothermic reactions release energy. Some reactions occur spontaneously, while others necessitate an external energy input. The reaction can be visualized using a reaction coordinate diagram to show the activation energy and potential energy throughout the reaction.

  4. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy ( E a ) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [ 2 ]

  5. Reaction coordinate - Wikipedia

    en.wikipedia.org/wiki/Reaction_coordinate

    Diagram of a catalytic reaction, showing the energy level as a function of the reaction coordinate. For a catalyzed reaction, the activation energy is lower. In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway.

  6. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    Van 't Hoff plot for an endothermic reaction. For an endothermic reaction, heat is absorbed, making the net enthalpy change positive. Thus, according to the definition of the slope: =, When the reaction is endothermic, Δ r H > 0 (and the gas constant R > 0), so

  7. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    The free energy of activation, ΔG ‡, is defined in transition state theory to be the energy such that ‡ = ⁡ ‡ ′ holds. The parameters ΔH ‡ and ΔS ‡ can then be inferred by determining ΔG ‡ = ΔH ‡ – TΔS ‡ at different temperatures.

  8. Hammond's postulate - Wikipedia

    en.wikipedia.org/wiki/Hammond's_postulate

    This can be explained with reference to potential energy diagrams: Energy diagrams showing how to interpret Hammond's Postulate. In case (a), which is an exothermic reaction, the energy of the transition state is closer in energy to that of the reactant than that of the intermediate or the product.

  9. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated process, an Arrhenius plot gives a straight line, from which the activation energy and the pre-exponential factor can both be determined.