Search results
Results from the WOW.Com Content Network
Cartesian product of the sets {x,y,z} and {1,2,3}In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. [1]
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs , i.e. a subset of the Cartesian product A × B of some sets A and B , so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A , B and C .
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
In this example, the rule says: multiply 3 by 2, getting 6. The sets {A, B, C} and {X, Y} in this example are disjoint sets, but that is not necessary.The number of ways to choose a member of {A, B, C}, and then to do so again, in effect choosing an ordered pair each of whose components are in {A, B, C}, is 3 × 3 = 9.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion.
In essence, the suspension can be seen as the cartesian product of with the unit interval, modulo an equivalence relation to turn the interval into a loop. The curried form then maps the space X {\displaystyle X} to the space of functions from loops into Z {\displaystyle Z} , that is, from X {\displaystyle X} into Ω Z {\displaystyle \Omega Z ...
The product topology for infinite products has a twist, and this has to do with being able to make all the projection maps continuous and to make all functions into the product continuous if and only if all its component functions are continuous (that is, to satisfy the categorical definition of product: the morphisms here are continuous ...