Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
In Bayesian inference, the gamma distribution is the conjugate prior to many likelihood distributions: the Poisson, exponential, normal (with known mean), Pareto, gamma with known shape σ, inverse gamma with known shape parameter, and Gompertz with known scale parameter. The gamma distribution's conjugate prior is: [28]
If X 1 and X 2 are Poisson random variables with means μ 1 and μ 2 respectively, then X 1 + X 2 is a Poisson random variable with mean μ 1 + μ 2. The sum of gamma (α i, β) random variables has a gamma (Σα i, β) distribution. If X 1 is a Cauchy (μ 1, σ 1) random variable and X 2 is a Cauchy (μ 2, σ 2), then X 1 + X 2 is a Cauchy (μ ...
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.
In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().
Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().
A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution , and that the rate parameter itself is considered as a random variable.
The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this