Search results
Results from the WOW.Com Content Network
In statistical learning point of view, the matrix completion problem is an application of matrix regularization which is a generalization of vector regularization. For example, in the low-rank matrix completion problem one may apply the regularization penalty taking the form of a nuclear norm () = ‖ ‖
Bibliometrix is a package for the R statistical programming language for quantitative research in scientometrics and bibliometrics. [1]Bibliometrics is the application of quantitative analysis and statistics to publications such as journal articles and their accompanying citation counts.
Characteristic features of tidyverse packages include extensive use of non-standard evaluation and encouraging piping. [3] [4] [5] As of November 2018, the tidyverse package and some of its individual packages comprise 5 out of the top 10 most downloaded R packages. [6] The tidyverse is the subject of multiple books and papers.
RStudio IDE (or RStudio) is an integrated development environment for R, a programming language for statistical computing and graphics. It is available in two formats: RStudio Desktop is a regular desktop application while RStudio Server runs on a remote server and allows accessing RStudio using a web browser.
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R, function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization. [2] [3] [4]
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
The group of packages strives to provide a cohesive collection of functions to deal with common data science tasks, including data import, cleaning, transformation and visualisation (notably with the ggplot2 package). The R Infrastructure packages [31] support coding and the development of R packages and as of 2021-05-04, Metacran [17] lists 16 ...
ARPACK, the ARnoldi PACKage, is a numerical software library written in FORTRAN 77 for solving large scale eigenvalue problems [1] in the matrix-free fashion.. The package is designed to compute a few eigenvalues and corresponding eigenvectors of large sparse or structured matrices, using the Implicitly Restarted Arnoldi Method (IRAM) or, in the case of symmetric matrices, the corresponding ...