Search results
Results from the WOW.Com Content Network
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
Thiocyanate [6] is known to be an important part in the biosynthesis of hypothiocyanite by a lactoperoxidase. [7] [8] [9] Thus the complete absence of thiocyanate or reduced thiocyanate [10] in the human body, (e.g., cystic fibrosis) is damaging to the human host defense system.
In organic chemistry, enols are a type of functional group or intermediate in organic chemistry containing a group with the formula C=C(OH) (R = many substituents). The term enol is an abbreviation of alkenol, a portmanteau deriving from "-ene"/"alkene" and the "-ol". Many kinds of enols are known. [1]
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]
Expressing resonance when drawing Lewis structures may be done either by drawing each of the possible resonance forms and placing double-headed arrows between them or by using dashed lines to represent the partial bonds (although the latter is a good representation of the resonance hybrid which is not, formally speaking, a Lewis structure ...
There are two possible structures for hydrogen cyanide, HCN and CNH, differing only as to the position of the hydrogen atom. The structure with hydrogen attached to nitrogen, CNH, leads to formal charges of -1 on carbon and +1 on nitrogen, which would be partially compensated for by the electronegativity of nitrogen and Pauling calculated the net charges on H, N and C as -0.79, +0.75 and +0.04 ...
The bending mode for a bridging hydroxide tends to be at a lower frequency as in [Cu(OH) 2 Cu] 2+ (955 cm −1). [8] M−OH stretching vibrations occur below about 600 cm −1. For example, the tetrahedral ion [Zn(OH) 4] 2− has bands at 470 cm −1 (Raman-active, polarized) and 420 cm −1 (infrared).
For example, in methane, the ionised states (CH 4 +) can be constructed out of four resonance structures attributing the ejected electron to each of the four sp 3 orbitals. A linear combination of these four structures, conserving the number of structures, leads to a triply degenerate T 2 state and an A 1 state.