Search results
Results from the WOW.Com Content Network
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
A consequence of the classification of finite simple groups, completed in 2004 by the usual standards of pure mathematics. 2004: Adam Marcus and Gábor Tardos: Stanley–Wilf conjecture: permutation classes: Marcus–Tardos theorem 2004: Ualbai U. Umirbaev and Ivan P. Shestakov: Nagata's conjecture on automorphisms: polynomial rings: 2004
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4 × 10 18 but remains unproven despite considerable effort.
This category is intended for all unsolved problems in mathematics, including conjectures. Conjectures are qualified by having a suggested or proposed hypothesis. There may or may not be conjectures for all unsolved problems.
Since 1900, mathematicians and mathematical organizations have announced problem lists but, with few exceptions, these have not had nearly as much influence nor generated as much work as Hilbert's problems. One exception consists of three conjectures made by André Weil in the late 1940s (the Weil conjectures).
Schanuel's conjecture; Schinzel's hypothesis H; Scholz conjecture; Second Hardy–Littlewood conjecture; Serre's conjecture II; Sexy prime; SierpiĆski number; Singmaster's conjecture; Safe and Sophie Germain primes; Stark conjectures; Sums of three cubes; Superperfect number; Supersingular prime (algebraic number theory) Szpiro's conjecture