Search results
Results from the WOW.Com Content Network
While both ventilation and perfusion increase going from the apex to the base, perfusion increases to a greater degree than ventilation, lowering the V/Q ratio at the base of the lungs. The principal factor involved in the creation of this V/Q gradient between the apex and the base of the lung is gravity (this is why V/Q ratios change in ...
An increase in Pi causes extraalveolar blood vessels to reduce in caliber, in turn causing blood flow to decrease (extraalveolar blood vessels are those blood vessels outside alveoli). Intraalveolar blood vessels (pulmonary capillaries) are thin walled vessels adjacent to alveoli which are subject to the pressure changes described by zones 1-3.
Ventilation rate (V) is the total gas volume that enters and leaves the alveoli in a given amount of time, commonly measured per minute. To calculate the ventilation rate, the tidal volume (inhaled or exhaled gas volume during normal breath) is multiplied by the frequency of breaths per minute, which is represented by the formula:
A histologic slide of a human alveolar sac. There are three major types of alveolar cell. Two types are pneumocytes or pneumonocytes known as type I and type II cells found in the alveolar wall, and a large phagocytic cell known as an alveolar macrophage that moves about in the lumens of the alveoli, and in the connective tissue between them ...
This information determines the average rate of ventilation of the alveoli of the lungs, to keep these pressures constant. The respiratory center does so via motor nerves which activate the diaphragm and other muscles of respiration. The breathing rate increases when the partial pressure of carbon dioxide in the blood increases.
The factors that determine the values for alveolar pO 2 and pCO 2 are: The pressure of outside air; The partial pressures of inspired oxygen and carbon dioxide; The rates of total body oxygen consumption and carbon dioxide production; The rates of alveolar ventilation and perfusion
The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration. [1]
Collateral ventilation is a back-up system of alveolar ventilation that can bypass the normal route of airflow when airways are restricted or obstructed. The pathways involved include those between adjacent alveoli ( pores of Kohn ), between bronchioles and alveoli (canals of Lambert), and those between bronchioles (channels of Martin).