Search results
Results from the WOW.Com Content Network
About 40-50% of the actinide contraction has been attributed to relativistic effects. [2] A decrease in atomic radii can be observed across the 5f elements from atomic number 89, actinium, to 102, nobelium. This results in smaller than otherwise expected atomic radii and ionic radii for the subsequent d-block elements starting with 103, lawrencium.
The lanthanides obey the Oddo–Harkins rule – odd-numbered elements are less abundant than their even-numbered neighbors. Three of the lanthanide elements have radioactive isotopes with long half-lives (138 La, 147 Sm and 176 Lu) that can be used to date minerals and rocks from Earth, the Moon and meteorites. [88]
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
Like the lanthanides, all actinides are highly reactive with halogens and chalcogens; however, the actinides react more easily. Actinides, especially those with a small number of 5f-electrons, are prone to hybridization. This is explained by the similarity of the electron energies at the 5f, 7s and 6d shells. Most actinides exhibit a larger ...
Relativistic effects are important for heavier elements with high atomic numbers, such as lanthanides and actinides. [4] Relativistic effects in chemistry can be considered to be perturbations, or small corrections, to the non-relativistic theory of chemistry, which is developed from the solutions of the Schrödinger equation.
While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium (thus including thorium and uranium) have relativistically destabilised and hence delocalised 5f and 6d electrons that participate ...
The actinide concept explained some of the observed properties of the first few actinides, namely the presence of +4 to +6 oxidation states, and proposed hybridization of the 5f and 6d orbitals, whose electrons were shown to be loosely bound in these elements. It also supported experimental results for a trend towards +3 oxidation states in the ...
An efficient and selective separation of actinides from lanthanides (Ln) is crucial to meet the Closed Fuel Cycle goal. Lanthanide ions, present in a large mass ratio with respect to actinides in the PUREX raffinate, have a high neutron-capture cross section that would not lead to an efficient minor actinide transmutation. The presence of ...