enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...

  4. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    With multiple independent variables, the model is y i = a + bx i,1 + bx i,2 + ... + bx i,n + e i, where n is the number of independent variables. [citation needed] In statistics, more specifically in linear regression, a scatter plot of data is generated with X as the independent variable and Y as the dependent variable.

  5. Mean dependence - Wikipedia

    en.wikipedia.org/wiki/Mean_dependence

    [1] [2]; moreover, mean independence implies uncorrelatedness while the converse is not true. Unlike stochastic independence and uncorrelatedness, mean independence is not symmetric: it is possible for Y {\displaystyle Y} to be mean-independent of X {\displaystyle X} even though X {\displaystyle X} is mean-dependent on Y {\displaystyle Y} .

  6. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.

  7. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In that model, the random variables X 1, ..., X n are not independent, but they are conditionally independent given the value of p. In particular, if a large number of the X s are observed to be equal to 1, that would imply a high conditional probability , given that observation, that p is near 1, and thus a high conditional probability , given ...

  8. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.

  9. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    Cochran's theorem then states that Q 1 and Q 2 are independent, with chi-squared distributions with n − 1 and 1 degree of freedom respectively. This shows that the sample mean and sample variance are independent.