Search results
Results from the WOW.Com Content Network
The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. [1] [2] In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.
Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.
The Mozingo reduction, also known as Mozingo reaction or thioketal reduction, is a chemical reaction capable of fully reducing a ketone or aldehyde to the corresponding alkane via a dithioacetal. [1] [2] The reaction scheme is as follows: [3]
The mechanism of reductions of aldehydes and ketones by samarium(II) iodide is based primarily on mechanisms elucidated for similar one-electron reducing agents. [12] Upon single-electron transfer, a ketyl dimer iv forms. In the absence of protic solvent, this dimer collapses to form 1,2-diols.
The overall combined transformation of an aldehyde to an alkyne by this method is named after its developers, American chemists Elias James Corey and Philip L. Fuchs. The Corey–Fuchs reaction By suitable choice of base, it is often possible to stop the reaction at the 1-bromoalkyne, a useful functional group for further transformation.
The aldehyde and pyrrole are heated in this medium to afford modest yields of the meso tetrasubstituted porphyrins [RCC 4 H 2 N] 4 H 2. The reaction entails both condensation of the aldehydes with the 2,5-positions of the pyrrole but also oxidative dehydrogenation of the porphyrinogen [RCC 4 H 2 NH] 4 .
The Chargers found a gem in the second round with Ladd McConkey. Will he be able to suit up for Sunday Night Football in Week 14?
Clemmensen reduction is a chemical reaction described as a reduction of ketones or aldehydes to alkanes using zinc amalgam and concentrated hydrochloric acid (HCl). [1] [2] This reaction is named after Erik Christian Clemmensen, a Danish-American chemist. [3] Scheme 1: Reaction scheme of Clemmensen Reduction.