enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.

  4. Quasi-maximum likelihood estimate - Wikipedia

    en.wikipedia.org/wiki/Quasi-maximum_likelihood...

    In statistics a quasi-maximum likelihood estimate (QMLE), also known as a pseudo-likelihood estimate or a composite likelihood estimate, is an estimate of a parameter θ in a statistical model that is formed by maximizing a function that is related to the logarithm of the likelihood function, but in discussing the consistency and (asymptotic) variance-covariance matrix, we assume some parts of ...

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Although an EM iteration does increase the observed data (i.e., marginal) likelihood function, no guarantee exists that the sequence converges to a maximum likelihood estimator. For multimodal distributions , this means that an EM algorithm may converge to a local maximum of the observed data likelihood function, depending on starting values.

  6. Restricted maximum likelihood - Wikipedia

    en.wikipedia.org/wiki/Restricted_maximum_likelihood

    In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem, it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [7]

  8. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  9. Two-step M-estimator - Wikipedia

    en.wikipedia.org/wiki/Two-step_M-estimator

    When the first step is a maximum likelihood estimator, under some assumptions, two-step M-estimator is more asymptotically efficient (i.e. has smaller asymptotic variance) than M-estimator with known first-step parameter. Consistency and asymptotic normality of the estimator follows from the general result on two-step M-estimators. [4] Let {V i ...