Search results
Results from the WOW.Com Content Network
The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.
Probability plots for distributions other than the normal are computed in exactly the same way. The normal quantile function Φ −1 is simply replaced by the quantile function of the desired distribution. In this way, a probability plot can easily be generated for any distribution for which one has the quantile function.
In the bottom-right graph, smoothed profiles of the previous graphs are rescaled, superimposed and compared with a normal distribution (black curve). Main article: Central limit theorem The central limit theorem states that under certain (fairly common) conditions, the sum of many random variables will have an approximately normal distribution.
The t distribution is often used as an alternative to the normal distribution as a model for data, which often has heavier tails than the normal distribution allows for; see e.g. Lange et al. [14] The classical approach was to identify outliers (e.g., using Grubbs's test) and exclude or downweight them in some way.
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
[2] [3] The PERT distribution is widely used in risk analysis [4] to represent the uncertainty of the value of some quantity where one is relying on subjective estimates, because the three parameters defining the distribution are intuitive to the estimator. The PERT distribution is featured in most simulation software tools.
In a histogram, each bin is for a different range of values, so altogether the histogram illustrates the distribution of values. But in a bar chart, each bar is for a different category of observations (e.g., each bar might be for a different population), so altogether the bar chart can be used to compare different categories.
In statistics, an empirical distribution function (a.k.a. an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the ...