enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A strictly diagonally dominant matrix (or an irreducibly diagonally dominant matrix [2]) is non-singular. A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix ...

  3. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.

  4. Weakly chained diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Weakly_chained_diagonally...

    Venn Diagram showing the containment of weakly chained diagonally dominant (WCDD) matrices relative to weakly diagonally dominant (WDD) and strictly diagonally dominant (SDD) matrices. In mathematics, the weakly chained diagonally dominant matrices are a family of nonsingular matrices that include the strictly diagonally dominant matrices.

  5. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.

  6. Gershgorin circle theorem - Wikipedia

    en.wikipedia.org/wiki/Gershgorin_circle_theorem

    Proof: Let D be the diagonal matrix with entries equal to the diagonal entries of A and let B ( t ) = ( 1 − t ) D + t A . {\displaystyle B(t)=(1-t)D+tA.} We will use the fact that the eigenvalues are continuous in t {\displaystyle t} , and show that if any eigenvalue moves from one of the unions to the other, then it must be outside all the ...

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, [1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. [2] A publication was not delivered before 1874 by ...

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix. Hilbert matrix: a ij = (i + j − 1) −1. A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j).

  9. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.