enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.

  3. Type III error - Wikipedia

    en.wikipedia.org/wiki/Type_III_error

    In 1970, L. A. Marascuilo and J. R. Levin proposed a "fourth kind of error" – a "type IV error" – which they defined in a Mosteller-like manner as being the mistake of "the incorrect interpretation of a correctly rejected hypothesis"; which, they suggested, was the equivalent of "a physician's correct diagnosis of an ailment followed by the ...

  4. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the "alternative hypothesis" (which is the ...

  5. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Low values of the likelihood ratio mean that the observed result was much less likely to occur under the null hypothesis as compared to the alternative. High values of the statistic mean that the observed outcome was nearly as likely to occur under the null hypothesis as the alternative, and so the null hypothesis cannot be rejected.

  6. Newman–Keuls method - Wikipedia

    en.wikipedia.org/wiki/Newman–Keuls_method

    For instance, when four means are compared, under the partial null hypothesis that μ1=μ2 and μ3=μ4=μ+delta with a non-zero delta, the Newman–Keuls procedure has a probability greater than alpha of rejecting μ1=μ2 or μ3=μ4 or both.

  7. The Design of Experiments - Wikipedia

    en.wikipedia.org/wiki/The_Design_of_Experiments

    Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis." "...the null hypothesis must be exact, that is free from vagueness and ambiguity, because it must supply the basis of the 'problem of distribution,' of which the test of significance is the solution." "We may, however, choose any ...

  8. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Here the null hypothesis is by default that two things are unrelated (e.g. scar formation and death rates from smallpox). [7] The null hypothesis in this case is no longer predicted by theory or conventional wisdom, but is instead the principle of indifference that led Fisher and others to dismiss the use of "inverse probabilities". [8]

  9. Null distribution - Wikipedia

    en.wikipedia.org/wiki/Null_distribution

    Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution