Search results
Results from the WOW.Com Content Network
An allylic rearrangement or allylic shift is an organic chemical reaction in which reaction at a center vicinal to a double bond causes the double bond to shift to an adjacent pair of atoms: It is encountered in both nucleophilic and electrophilic substitution , although it is usually suppressed relative to non-allylic substitution.
In organic chemistry, an allyl group is a substituent with the structural formula −CH 2 −HC=CH 2. It consists of a methylene bridge ( −CH 2 − ) attached to a vinyl group ( −CH=CH 2 ). [ 1 ] [ 2 ] The name is derived from the scientific name for garlic , Allium sativum .
Carbonyl allylation has been employed in the synthesis of polyketide natural products and other oxygenated molecules with a contiguous array of stereocenters. For example, allylstannanation of a threose-derived aldehyde affords the macrolide antascomicin B, which structurally resembles FK506 and rapamycin, and is a potent binder of FKBP12. [12]
In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. [1] Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular.
The Tsuji–Trost reaction (also called the Trost allylic alkylation or allylic alkylation) is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl
Allylic strain in an olefin. Allylic strain (also known as A 1,3 strain, 1,3-allylic strain, or A-strain) in organic chemistry is a type of strain energy resulting from the interaction between a substituent on one end of an olefin (a synonym for an alkene) with an allylic substituent on the other end. [1]
Allylic oxidation can be predicted by the substitution pattern on the olefin. In the case of 1,2-disubstituted olefins, reaction rates follow CH > CH 2 > CH 3: Geminally-substituted olefins react in the same order of reaction rates as above: [2] Trisubstituted alkenes experience reactivity at the more substituted end of the double bond.
Allyl halides react with Ni(CO) 4 to form pi-allyl complexes, (allyl) 2 Ni 2 Cl 2. [8] These compounds in turn are sources of allyl nucleophiles. In (allyl) 2 Ni 2 Br 2 and (allyl)Ni(C 5 H 5), nickel is assigned to oxidation number +2, and the electron counts are 16 and 18, respectively. Bis(allyl)nickel is prepared from allyl magnesium bromide ...