Search results
Results from the WOW.Com Content Network
The Larmor frequency is important in NMR spectroscopy. The gyromagnetic ratios, which give the Larmor frequencies at a given magnetic field strength, have been measured and tabulated. [3] Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction.
This relationship also explains an apparent contradiction between the two equivalent terms, gyromagnetic ratio versus magnetogyric ratio: whereas it is a ratio of a magnetic property (i.e. dipole moment) to a gyric (rotational, from Greek: γύρος, "turn") property (i.e. angular momentum), it is also a ratio between the angular precession ...
The operating (or Larmor) frequency of a magnet (usually quoted as absolute value in MHz) is calculated from the Larmor equation [4] =, where B 0 is the induction of the magnet (SI units of tesla), and is the magnetogyric ratio of the nucleus — an empirically measured fundamental constant determined by the details of the structure of each nucleus.
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
Taking for example the H 2 O molecules in liquid phase without the contamination of oxygen-17, the value of K is 1.02×10 10 s −2 and the correlation time is on the order of picoseconds = s, while hydrogen nuclei 1 H at 1.5 tesla precess at a Larmor frequency of approximately 64 MHz (Simplified. BPP theory uses angular frequency indeed).
Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ). Energy level diagram of electrons in hydrogen atom
If the rotating field has frequency (ω) equal to the Larmor frequency, it will produce a high intensity of the other beam (spin down state). By sweeping the frequency to obtain a maximum intensity, one can find out the Larmor frequency and the magnetic moment of the atom.
The Larmor frequency can be determined from the product of the gyromagnetic ratio with the magnetic field strength. Since for the neutron the sign of γ n is negative, the neutron's spin angular momentum precesses counterclockwise about the direction of the external magnetic field.