enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    A general approach to the least squares problem ‖ ‖ can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X.

  3. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .

  4. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    QR decomposition is often used to solve the linear least squares ... If instead A is a complex square matrix, ... Online Matrix Calculator Performs QR decomposition ...

  7. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    For this feasible generalized least squares (FGLS) techniques may be used; in this case it is specialized for a diagonal covariance matrix, thus yielding a feasible weighted least squares solution. If the uncertainty of the observations is not known from external sources, then the weights could be estimated from the given observations.

  8. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Recall that M = I − P where P is the projection onto linear space spanned by columns of matrix X. By properties of a projection matrix, it has p = rank(X) eigenvalues equal to 1, and all other eigenvalues are equal to 0. Trace of a matrix is equal to the sum of its characteristic values, thus tr(P) = p, and tr(M) = n − p. Therefore,

  9. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model.