enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.

  3. File:Gelfand's formula for a 3x3 matrix.svg - Wikipedia

    en.wikipedia.org/wiki/File:Gelfand's_formula_for...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    The program structure of this algorithm is a simple triple-loop, as in the standard Gaussian elimination. However in this case the matrix is modified so that each M k,k entry contains the leading principal minor [M] k,k. Algorithm correctness is easily shown by induction on k. [4]

  5. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In particular, the diagonal entries are the principal minors of , which of course are also principal minors of , and are thus non-negative. Since the trace of a matrix is the sum of the diagonal entries, it follows that tr ⁡ ( ⋀ j M k ) ≥ 0. {\displaystyle \operatorname {tr} \left(\textstyle \bigwedge ^{j}M_{k}\right)\geq 0.}

  6. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4] The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The ...

  8. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For the general case of an arbitrary number n of variables, there are n sign conditions on the n principal minors of the Hessian matrix that together are equivalent to positive or negative definiteness of the Hessian (Sylvester's criterion): for a local minimum, all the principal minors need to be positive, while for a local maximum, the minors ...

  9. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...