enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  3. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  4. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In geochronology, the MSWD is a measure of goodness of fit that takes into account the relative importance of both the internal and external reproducibility, with most common usage in isotopic dating.

  5. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Nelder-Mead optimization in Python in the SciPy library. nelder-mead - A Python implementation of the Nelder–Mead method; NelderMead() - A Go/Golang implementation; SOVA 1.0 (freeware) - Simplex Optimization for Various Applications - HillStormer, a practical tool for nonlinear, multivariate and linear constrained Simplex Optimization by ...

  6. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    SciPy: Python-library, contains a sub-library scipy.interpolate with spline functions based on FITPACK; TinySpline: C-library for splines with a C++ wrapper and bindings for C#, Java, Lua, PHP, Python, and Ruby; Einspline: C-library for splines in 1, 2, and 3 dimensions with Fortran wrappers

  7. Deming regression - Wikipedia

    en.wikipedia.org/wiki/Deming_regression

    In statistics, Deming regression, named after W. Edwards Deming, is an errors-in-variables model that tries to find the line of best fit for a two-dimensional data set. It differs from the simple linear regression in that it accounts for errors in observations on both the x- and the y- axis.

  8. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  9. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Variants of this algorithm are available in MATLAB as the routine lsqnonneg [8] [1] and in SciPy as optimize.nnls. [9] Many improved algorithms have been suggested since 1974. [1] Fast NNLS (FNNLS) is an optimized version of the Lawson–Hanson algorithm. [2]