Search results
Results from the WOW.Com Content Network
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
The August equation describes a linear relation between the logarithm of the pressure and the reciprocal temp. This assumes a temperature-independent heat of vaporization. The Antoine equation allows an improved, but still inexact description of the change of the heat of vaporization with the temperature.
Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). [1] [2]
One of the relations it resolved to is the enthalpy of vaporization at a provided temperature by measuring the slope of a saturation curve on a pressure vs. temperature graph. It also allows us to determine the specific volume of a saturated vapor and liquid at that provided temperature.
A formula to compute the ebullioscopic constant is: [2] = R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent.
The higher heating value takes into account the latent heat of vaporization of water in the combustion products, and is useful in calculating heating values for fuels where condensation of the reaction products is practical (e.g., in a gas-fired boiler used for space heat). In other words, HHV assumes all the water component is in liquid state ...