Search results
Results from the WOW.Com Content Network
Add the digits (up to but not including the check digit) in the even-numbered positions (second, fourth, sixth, etc.) to the result. Take the remainder of the result divided by 10 (i.e. the modulo 10 operation). If the remainder is equal to 0 then use 0 as the check digit, and if not 0 subtract the remainder from 10 to derive the check digit.
Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Luhn mod. N. algorithm. The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any ...
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
If the hundreds digit is odd, the number obtained by the last two digits must be 4 times an odd number. 352: 52 = 4 x 13. Add the last digit to twice the rest. The result must be divisible by 8. 56: (5 × 2) + 6 = 16. The last three digits are divisible by 8. [2][3] 34,152: Examine divisibility of just 152: 19 × 8.
Casting out nines. Arithmetic procedure of verifying operations using modulo characteristics of digit 9. Casting out nines is any of three arithmetical procedures: [1] Adding the decimal digits of a positive whole number, while optionally ignoring any 9s or digits which sum to 9 or a multiple of 9. The result of this procedure is a number which ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.