enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    More generally, for each value of , we can calculate the corresponding likelihood. The result of such calculations is displayed in Figure 1. The result of such calculations is displayed in Figure 1. The integral of L {\textstyle {\mathcal {L}}} over [0, 1] is 1/3; likelihoods need not integrate or sum to one over the parameter space.

  4. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.

  5. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  6. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  7. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  8. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    The Fisher information matrix is used to calculate the covariance matrices associated with maximum-likelihood estimates. It can also be used in the formulation of test statistics, such as the Wald test. In Bayesian statistics, the Fisher information plays a role in the derivation of non-informative prior distributions according to Jeffreys ...

  9. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    This is important, as it makes an enormous difference to the ease with which the statistics can be analyzed so as to extract maximum information from the data series. If there are other non-linear effects that have a correlation to the independent variable (such as cyclic influences), the use of least-squares estimation of the trend is not valid.