Search results
Results from the WOW.Com Content Network
Nutrients travel through tiny blood vessels of the microcirculation to reach organs. [11] The lymphatic system is an essential subsystem of the circulatory system consisting of a network of lymphatic vessels, lymph nodes, organs, tissues and circulating lymph. This subsystem is an open system. [12]
[3] [6] This blood then enters the left atrium, which pumps it through the mitral valve into the left ventricle. [3] [6] From the left ventricle, the blood passes through the aortic valve to the aorta. [3] [6] The blood is then distributed to the body through the systemic circulation before returning again to the pulmonary circulation. [3] [6]
The circulatory system uses the channel of blood vessels to deliver blood to all parts of the body. This is a result of the left and right sides of the heart working together to allow blood to flow continuously to the lungs and other parts of the body. Oxygen-poor blood enters the right side of the heart through two large veins.
This causes some of the blood to travel "in reverse", from the left ventricle to the left atrium, instead of forward to the aorta and the rest of the body. This leaking of blood to the left atrium is known as mitral regurgitation. Similarly, the leaking of blood from the right ventricle through the tricuspid valve and into the right atrium can ...
The capillaries connect to venules, and the blood then travels back through the network of veins to the venae cavae into the right heart. The micro-circulation — the arterioles, capillaries, and venules —constitutes most of the area of the vascular system and is the site of the transfer of O 2, glucose, and enzyme substrates into the cells.
The table below shows the path that blood takes when it travels through the glomerulus, traveling "down" the arteries and "up" the veins. However, this model is greatly simplified for clarity and symmetry. Some of the other paths and complications are described at the bottom of the table.
The programmed delay at the AV node also provides time for blood volume to flow through the atria and fill the ventricular chambers—just before the return of the systole (contractions), ejecting the new blood volume and completing the cardiac cycle. [8] (See Wiggers diagram: "Ventricular volume" tracing (red), at "Systole" panel.)
The aorta is the largest blood vessel in human body. The aorta is the root systemic artery (i.e., main artery). In humans, it receives blood directly from the left ventricle of the heart via the aortic valve. As the aorta branches and these arteries branch, in turn, they become successively smaller in diameter, down to the arterioles.