Search results
Results from the WOW.Com Content Network
Although conventions vary in their precise definition, these form a general class of subsets of three-dimensional Euclidean space (ℝ 3) which capture part of the familiar notion of "surface." By analyzing the class of curves which lie on such a surface, and the degree to which the surfaces force them to curve in ℝ 3, one can associate to ...
See also multivariable calculus, list of multivariable calculus topics. Manifold. Differentiable manifold; Smooth manifold; Banach manifold; Fréchet manifold; Tensor analysis. Tangent vector
The Weingarten equations give the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of a point on the surface. These formulas were established in 1861 by the German mathematician Julius Weingarten .
Saddle surface with normal planes in directions of principal curvatures. In differential geometry, the two principal curvatures at a given point of a surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how the surface bends by different amounts in ...
The differential-geometric properties of a parametric curve (such as its length, its Frenet frame, and its generalized curvature) are invariant under reparametrization and therefore properties of the equivalence class itself. The equivalence classes are called C r-curves and are central objects studied in the differential geometry of curves.
In differential geometry, the Willmore energy is a quantitative measure of how much a given surface deviates from a round sphere. Mathematically, the Willmore energy of a smooth closed surface embedded in three-dimensional Euclidean space is defined to be the integral of the square of the mean curvature minus the Gaussian curvature.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
In differential geometry, constant-mean-curvature (CMC) surfaces are surfaces with constant mean curvature. [1] [2] This includes minimal surfaces as a subset, but typically they are treated as special case. Note that these surfaces are generally different from constant Gaussian curvature surfaces, with the important exception of the sphere.