Search results
Results from the WOW.Com Content Network
The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *. For example, if we have two three-by-three matrices, the first a kernel, and the second an image piece, convolution is the process of flipping both the rows and columns of the kernel and multiplying locally ...
For example, convolution of digit sequences is the kernel operation in multiplication of multi-digit numbers, which can therefore be efficiently implemented with transform techniques (Knuth 1997, §4.3.3.C; von zur Gathen & Gerhard 2003, §8.2). Eq.1 requires N arithmetic operations per output value and N 2 operations for N outputs. That can be ...
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine.
where here denotes the 2-dimensional signal processing convolution operation. In his text describing the origin of the operator, [1] Sobel shows different signs for these kernels. He defined the operators as neighborhood masks (i.e. correlation kernels), and therefore are mirrored from what described here as convolution kernels.
The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication). Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.
This method helps reduce the computational complexity often associated with multidimensional convolutions due to the vast amounts of data inherent in modern-day digital systems. [9] For sake of brevity, the two-dimensional case is used as an example, but the same concepts can be extended to multiple dimensions.
When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about N (log 2 (N) + 1) complex multiplications for the FFT, product of arrays, and IFFT. [ B ] Each iteration produces N-M+1 output samples, so the number of complex multiplications per output sample is about :
To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).