Search results
Results from the WOW.Com Content Network
In real analysis, this example shows that there are infinitely differentiable functions f (x) whose Taylor series are not equal to f (x) even if they converge. By contrast, the holomorphic functions studied in complex analysis always possess a convergent Taylor series, and even the Taylor series of meromorphic functions , which might have ...
Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .
Furthermore, every polynomial is its own Maclaurin series. The exponential function is analytic. Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their ...
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
Thus, mathematically, specifying a series is the same as specifying the sequence of the terms in the series. The difference is that, when considering a series, one is often interested in whether the sequence of partial sums s n := x 1 + ⋯ + x n {\displaystyle s_{n}:=x_{1}+\cdots +x_{n}} converges or not and if so, to what.
Maclaurin attributed the series to Brook Taylor, though the series was known before to Newton and Gregory, and in special cases to Madhava of Sangamagrama in fourteenth century India. [6] Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series. [7]