enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  3. Lacunary function - Wikipedia

    en.wikipedia.org/wiki/Lacunary_function

    Evidently the argument advanced in the simple example shows that certain series can be constructed to define lacunary functions. What is not so evident is that the gaps between the powers of z can expand much more slowly, and the resulting series will still define a lacunary function. To make this notion more precise some additional notation is ...

  4. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence. The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals.

  5. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    Furthermore, every polynomial is its own Maclaurin series. The exponential function is analytic. Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their ...

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  8. Category:Real analysis - Wikipedia

    en.wikipedia.org/wiki/Category:Real_analysis

    Real analysis is a traditional division of mathematical analysis, along with complex analysis and functional analysis. It is mainly concerned with the 'fine' (micro-level) behaviour of real functions, and related topics. See Category:Fourier analysis for topics in harmonic analysis.

  9. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).