Search results
Results from the WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
The return, or the holding period return, can be calculated over a single period.The single period may last any length of time. The overall period may, however, instead be divided into contiguous subperiods. This means that there is more than one time period, each sub-period beginning at the point in time where the previous one ended. In such a case, where there are
Semi-log plot of the Internet host count over time shown on a logarithmic scale. A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences between the magnitudes of the numbers involved.
The logarithm keys (LOG for base 10 and LN for base e) on a TI-83 Plus graphing calculator Logarithms are easy to compute in some cases, such as log 10 (1000) = 3 . In general, logarithms can be calculated using power series or the arithmetic–geometric mean , or be retrieved from a precalculated logarithm table that provides a fixed precision.
The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation.
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...