Search results
Results from the WOW.Com Content Network
The CIE 1924 photopic V(λ) luminosity function, [cie 3] which is included in the CIE 1931 color-matching functions as the y (λ) function, has long been acknowledged to underestimate the contribution of the blue end of the spectrum to perceived luminance. There have been numerous attempts to improve the standard function, to make it more ...
The CIE 1951 scotopic luminosity function. The horizontal axis is wavelength in nm. The normal human observer's relative wavelength sensitivity will not change due to background illumination under scotopic vision. The wavelength sensitivity is determined by the rhodopsin photopigment.
A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).
For low light levels, the response of the human eye changes, and the scotopic curve applies. The photopic curve is the CIE standard curve used in the CIE 1931 color space. The luminous flux (or visible power) in a light source is defined by the photopic luminosity function. The following equation calculates the total luminous flux in a source ...
Photopic vision is the vision of the eye under well-lit conditions (luminance levels from 10 to 10 8 cd/m 2). In humans and many other animals, photopic vision allows color perception , mediated by cone cells , and a significantly higher visual acuity and temporal resolution than available with scotopic vision .
In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way. The weightings are standardized by the CIE and ...
The luminous flux accounts for the sensitivity of the eye by weighting the power at each wavelength with the luminosity function, which represents the eye's response to different wavelengths. The luminous flux is a weighted sum of the power at all wavelengths in the visible band. Light outside the visible band does not contribute.
In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.