enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Functions can be written as a linear combination of the basis functions, = = (), for example through a Fourier expansion of f(t). The coefficients b j can be stacked into an n by 1 column vector b = [b 1 b 2 … b n] T. In some special cases, such as the coefficients of the Fourier series of a sinusoidal function, this column vector has finite ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Let D be a linear differential operator on the space C ∞ of infinitely differentiable real functions of a real argument t. The eigenvalue equation for D is the differential equation = The functions that satisfy this equation are eigenvectors of D and are commonly called eigenfunctions.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  5. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    An eigenvalue is said to be non-degenerate if its eigenspace is one-dimensional. The eigenvalues of the matrices representing physical observables in quantum mechanics give the measurable values of these observables while the eigenstates corresponding to these eigenvalues give the possible states in which the system may be found, upon ...

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  7. Spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(functional_analysis)

    If is an eigenvalue of , then the operator is not one-to-one, and therefore its inverse () is not defined. However, the converse statement is not true: the operator may not have an inverse, even if is not an eigenvalue.

  8. Eigenform - Wikipedia

    en.wikipedia.org/wiki/Eigenform

    As the function f is also an eigenvector under each Hecke operator T i, it has a corresponding eigenvalue. More specifically a i, i ≥ 1 turns out to be the eigenvalue of f corresponding to the Hecke operator T i. In the case when f is not a cusp form, the eigenvalues can be given explicitly. [1]

  9. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    This makes it an eigenvector (with eigenvalue 1), and means it can be derived from P. [5] In layman's terms, the steady-state vector is the vector that, when we multiply it by P, we get the exact same vector back. [6] For the weather example, we can use this to set up a matrix equation: