enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Superheavy element - Wikipedia

    en.wikipedia.org/wiki/Superheavy_element

    Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. [1] The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium (atomic number 103).

  3. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium (called 'metals' by astrophysicists) remains small (few percent), so that the universe still has approximately ...

  4. Island of stability - Wikipedia

    en.wikipedia.org/wiki/Island_of_stability

    The process of slow neutron capture used to produce nuclides as heavy as 257 Fm is blocked by short-lived isotopes of fermium that undergo spontaneous fission (for example, 258 Fm has a half-life of 370 μs); this is known as the "fermium gap" and prevents the synthesis of heavier elements in such a reaction.

  5. So, what’s a super heavy element enjoyer to do? The next big thing in physical chemistry, it seems, is titanium. Titanium 50 has 22 protons plus 28 neutrons and is very stable.

  6. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  7. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.

  8. This could be the periodic table's next element - AOL

    www.aol.com/news/2014-05-03-this-could-be-the...

    The periodic table could soon welcome a new element - it's currently unnamed but known as the super heavy element 117. You might want to sit down - it's time for a science lesson. "It's really ...

  9. r-process - Wikipedia

    en.wikipedia.org/wiki/R-process

    Abundance peaks for the r-process occur near mass numbers A = 82 (elements Se, Br, and Kr), A = 130 (elements Te, I, and Xe) and A = 196 (elements Os, Ir, and Pt). The r-process entails a succession of rapid neutron captures (hence the name) by one or more heavy seed nuclei, typically beginning with nuclei in the abundance peak centered on 56 Fe.