Search results
Results from the WOW.Com Content Network
A spectrum analyzer is also used to determine, by direct observation, the bandwidth of a digital or analog signal. A spectrum analyzer interface is a device that connects to a wireless receiver or a personal computer to allow visual detection and analysis of electromagnetic signals over a defined band of frequencies.
Spectrum analysis, also referred to as frequency domain analysis or spectral density estimation, is the technical process of decomposing a complex signal into simpler parts. As described above, many physical processes are best described as a sum of many individual frequency components.
Signal analyzers can perform the operations of both spectrum analyzers and vector signal analyzers.A signal analyzer can be viewed as a measurement platform, with operations such as spectrum analysis (including phase noise, power, and distortion) and vector signal analysis (including demodulation or modulation quality analysis) performed as measurement applications.
Spectrum analyzer, a hardware device that measures the magnitude of an input signal versus frequency within the full frequency range of the instrument Spectral theory , in mathematics, a theory that extends eigenvalues and eigenvectors to linear operators on Hilbert space, and more generally to the elements of a Banach algebra
In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics , multivariate geometry, dynamical systems and signal processing .
A vector signal analyzer operates by first down-converting the signal spectra by using superheterodyne techniques. A portion of the input signal spectrum is down-converted [ broken anchor ] (using a voltage-controlled oscillator and a mixer ) to the center frequency of a band-pass filter .
Spectrum analyzer based measurement can show the phase-noise power over many decades of frequency; e.g., 1 Hz to 10 MHz. The slope with offset frequency in various offset frequency regions can provide clues as to the source of the noise; e.g., low frequency flicker noise decreasing at 30 dB per decade (= 9 dB per octave). [8] Phase noise ...
A dielectric permittivity spectrum over a wide range of frequencies. The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies.