Search results
Results from the WOW.Com Content Network
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. [1] This kind of conversion is in fact so common that a comprehensive overview is challenging.
For example, phenols and anilines react quickly with chlorine and bromine water to give multihalogenated products. Many detailed laboratory procedures are available. [ 5 ] For alkylbenzene derivatives, e.g. toluene , the alkyl positions tend to be halogenated by free radical conditions, whereas ring halogenation is favored in the presence of ...
In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1]The general chemical formula of the halogen addition reaction is:
Traditional savings account rates. The Federal Deposit Insurance Corporation tracks monthly average interest rates paid on savings and other deposit accounts, like certificates of deposit, that ...
The reaction begins with the formation of alkyl/arene-magnesium-halogen compound, followed by addition of proton source to form dehalogenated product. Egorov and his co-workers have reported dehalogenation of benzyl halides using atomic magnesium in 3P state at 600 °C. Toluene and bi-benzyls were produced as the product of the reaction. [9]