Search results
Results from the WOW.Com Content Network
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits.
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.
Huffman coding is a more sophisticated technique for constructing variable-length prefix codes. The Huffman coding algorithm takes as input the frequencies that the code words should have, and constructs a prefix code that minimizes the weighted average of the code word lengths. (This is closely related to minimizing the entropy.)
Such an approach allows simpler and faster encoding/decoding than arithmetic coding or even Huffman coding, since the latter requires a table lookups. In the {0.95, 0.05} example, a Golomb-Rice code with a four-bit remainder achieves a compression ratio of 71.1 % {\displaystyle 71.1\%} , far closer to optimum than using three-bit blocks.
An entropy coding attempts to approach this lower bound. Two of the most common entropy coding techniques are Huffman coding and arithmetic coding. [2] If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simpler static code may be useful.
If symbols are assigned in ranges of lengths being powers of 2, we would get Huffman coding. For example, a->0, b->100, c->101, d->11 prefix code would be obtained for tANS with "aaaabcdd" symbol assignment. Example of generation of tANS tables for m = 3 size alphabet and L = 16 states, then applying them for stream decoding.
In computing, Deflate (stylized as DEFLATE, and also called Flate [1] [2]) is a lossless data compression file format that uses a combination of LZ77 and Huffman coding.It was designed by Phil Katz, for version 2 of his PKZIP archiving tool.